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Abstract—This paper explores the potential of RISC-V CPUs
for aerospace applications, focusing on the specific use case of
Brushless Direct Current Motor (BLDC) control. The project
aims to contribute to Brazil’s technological sovereignty by re-
ducing reliance on foreign semiconductor technology. An initial
implementation of a basic Six-Step algorithm demonstrated the
feasibility of RISC-V for motor control. However, the limitations
of this approach led to the investigation of more advanced Field-
Oriented Control (FOC). While FOC offers superior perfor-
mance, its implementation presented challenges related to timing
constraints, current measurement accuracy, and rotor position
feedback. The project successfully identified hardware require-
ments and constraints associated with BLDC motor control.

Index Terms—RISC-V, BLDC motor control, aerospace appli-
cations, technological sovereignty, FPGA

I. INTRODUCTION

Brazil currently depends on integrated circuits (IC) devel-
oped and manufactured by other nations. This dependency
exposes the country to the political landscape of the interna-
tional scenario, reduces the level of computer personalization
for national use case scenarios, and exposes what technology
projects the Brazilian government is working on to foreign
institutions, which may represent a vulnerability to information
security. The national industry is also affected by forcing
companies to rely on international technological commercial
agreements, typically slow-paced, instead of focusing on build-
ing their products and solutions.

To address the need for domestic semiconductor technology,
the Centro de Tecnologia da Informação Renato Archer (CTI
Renato Archer), a research institution under the Ministério
de Ciência, Tecnologia e Inovação (MCTI), has partnered
with Insper Instituto de Ensino e Pesquisa (Insper) to de-
velop a proprietary computer processor. Established in 1982,
CTI Renato Archer is dedicated to promoting technological
innovation and strengthening the Brazilian industry through
collaborations between government, industry, and academia.
Based in Campinas, São Paulo, the center conducts research
in various areas, including micro/nanofabrication, electronics,
photovoltaic energy, and software development.

The development of a custom intellectual property (IP) for
computer processors is a multi-year resource-demanding ini-
tiative. Careful planning and prototyping is needed to properly
meet requirements. To investigate hardware requirements for
an IC useful in critical industries such as aerospace we decided
to build a common application for satellites utilizing an open-
source implementation of the RISC-V, NEORV32[1]. The
selected application was the control algorithm of a Brushless
Direct Current Motor (BLDC) motor. This motor is a critical
component to several solutions, specially those with low-
maintenance constraints, such as drone’s helices and reaction
wheels and gyroscopes to control the satellite’s orientation.
Specifically, in the aerospace scenario, BLDC motors are
important in reason of the difficulty of accessing motors
deployed in space. This makes low to no maintainability a
critical requirement.

This paper presents the results of our investigation, what was
and wasn’t possible to prototype. The open-source NEORV32
implementation and a common application like BLDC motor
control allow us to gain valuable insights into the upcoming
iterations of the custom RISC-V core, empowering the nation’s
industry and reducing dependence on foreign nations.

II. BRUSHLESS DC MOTOR

The BLDC motor is an electric motor without brushes,
making it more efficient and durable than traditional direct
current (DC) motors. It consists of a rotor with permanent
magnets and a stator with coils as show on Figure 1. A
magnetic field is generated when current flows through the
coils, causing the rotor to rotate as it aligns with this field.

The operation of BLDC motors necessitates the utilization
of an electronic controller to regulate the current through
the coils, thereby guaranteeing uninterrupted rotor movement.
This controller is paramount for accurately selecting coils and
precisely timing the current to enhance performance. BLDC
motors are used in aerospace and other critical applications
due to their reliability and low maintenance, and fault-tolerant



Fig. 1: Basic Structure of a BLDC

control systems are often employed to ensure continued oper-
ation.

To maintain rotation, the current direction in the coils must
periodically reverse, creating a dynamic magnetic field that
keeps the rotor in motion. This requires specialized algorithms
for both open and closed-loop control.

A. Operating Principle

In a DC electric motor, five fundamental physical phe-
nomena occur simultaneously, enabling motor operation, as
illustrated in Figure 2. The process begins with the armature
voltage ea, which, according to Ohm’s law, generates an arma-
ture current ia. This current, in turn, produces a motor torque
τm through the Lorentz force. The torque causes the motor
to rotate with an angular velocity ωm, which then induces
a back EMF (electromotive force) eb in the armature due to
Faraday’s law of induction. This induced voltage opposes the
armature voltage ea, creating a feedback loop that regulates
motor speed and stabilizes operation. This chain of interactions
follows physical laws essential to motor functionality.

Fig. 2: Electromagnetism Laws

The same fundamental laws govern the operation of a BLDC
motor as a conventional DC motor, but initiating movement in
a BLDC motor is more complex. As shown in Figure 1, the

BLDC motor contains multiple coils, and to generate rotation,
these coils must be energized in a specific sequence. This
precise control of coil activation enables the BLDC motor
to rotate efficiently. There are various methods for driving
a BLDC motor, with the most well-known being the Six-
step algorithm and the Field Oriented Control (FOC)
algorithm. Each approach offers unique benefits in terms of
torque smoothness, precision, and efficiency.

B. Key Characteristics

Accurate motor characterization is essential for designing
an effective controller, as it allows precise modeling of the
motor’s behavior. Understanding the motor’s electrical and me-
chanical parameters provides insights into how it will respond
under different operating conditions, which is particularly
important for implementing advanced control techniques, such
as FOC.

In this project, rather than performing in-depth parameter
identification ourselves, we utilized tools from STMicroelec-
tronics [2], that provide precise measurements for all relevant
electrical and mechanical variables, as shown in Table I. These
parameters are essential for developing an accurate control
model and ensuring the stability and efficiency of the motor
under FOC, being used to make the control algorithm, which
will be explored more in section V-B.

TABLE I: Electrical and Mechanical Specifications

Electrical Model
Resistance (Rs) 0.1 Ω
Inductance (Ls) 0.05 mH
Electrical Constant (ke) 0.36 Vrms/kRPM
VBus 11.4 V
Max Current (Imax) 10 Apk

Mechanical Model
Friction 5.22 µN·m·s
Inertia 992.61 nN·m·s2
Max Speed (mechanical limit) 20,080 RPM

These electrical and mechanical parameters directly in-
fluence the motor’s performance and control precision. For
example, the resistance (Rs) and inductance (Ls) affect the
motor’s response time to current changes, which is crucial for
FOC algorithms that rely on fast, precise current adjustments
to maintain optimal torque and speed. Similarly, friction and
inertia impact the motor’s acceleration and deceleration char-
acteristics, affecting its stability and efficiency under load.

Implementing FOC requires accurate knowledge of these
parameters to achieve smooth and efficient control. If the pa-
rameter values are not correctly calibrated, the FOC algorithm
may perform poorly or even fail, leading to instability or
inefficient operation. However, if a simpler control method,
such as six-step control, is used, detailed parameter data may
not be necessary, as six-step control does not rely as heavily
on precise motor characterization.

III. DRIVE METHODS

When controlling a BLDC motor, several algorithms can
be applied, ranging from simple to more complex methods.



Unlike a conventional DC motor, even the simplest approach
for a BLDC motor requires activating specific phases in a
precise order and position; failing to do so prevents the motor
from moving.

A. Open-Loop Control

Open-loop control for a BLDC motor lacks feedback, mean-
ing there is no mechanism to optimize efficiency, regulate
current, or maintain a constant speed. In this configuration,
the motor simply receives an input signal to move, but the re-
sulting output behavior, including speed and position, remains
uncontrolled. As shown in Figure 3, the open-loop approach
merely initiates motion without maximizing performance or
stability.

In open-loop control, an input signal causes an action with-
out monitoring or adjusting the output. This limitation is why
closed-loop control, which includes feedback mechanisms,
is often preferred in applications requiring consistent motor
performance.

B. Closed-Loop Control

As discussed in Chapter III-A, open-loop control lacks the
performance and efficiency required for many applications.
For this reason, closed-loop control is preferred, despite being
more complex to implement. Closed-loop control requires
continuous feedback from the motor to adjust its performance
in real-time. Figure 4 illustrates an example of a FOC system,
a reliable, and efficient closed-loop algorithm commonly used
for BLDC motors.

Before delving into specific control algorithms, it’s essential
to understand the feedback variables necessary for implement-
ing closed-loop control. These include:

• Position
• Angular Speed
• Current
At least one of these parameters plays a crucial role in

motor control. The system can adjust performance dynamically
to meet specific requirements by accurately measuring these
variables.

Position and Angular Speed are fundamental for precise
control. Position feedback allows the control system to esti-
mate angular speed, typically using timer techniques. Common
methods for obtaining position feedback include Hall sensors:

• Hall sensors provide digital signals indicating the rotor’s
presence within specific sectors.

• In BLDC control, three Hall sensors typically divide the
rotor’s movement into six distinct positions (or sectors).

• However, Hall sensors offer coarse position data, covering
60-degree sectors. For finer position control, sensorless
methods measuring back EMF or using an encoder may
be necessary.

Current and Torque Control are important components,
depending on the specific requirements of the application. As
discussed in Section II-A, torque is proportional to the current
supplied to the motor. Therefore, if the application requires
precise torque control, implementing a closed-loop algorithm

that regulates current is essential. However, for applications
where torque control is not critical, current regulation may
not be necessary. The choice of control strategy depends on
the problem to be solved, allowing for a more tailored and
efficient use of resources.

C. Six-step

The Six-Step Algorithm is a common open-loop control
method for BLDC motors, consisting of six discrete steps
that sequentially activate motor coils to produce rotation. Each
step advances the rotor alignment by 60°, ensuring continuous
rotation as shown in Table II. Hall sensors, typically three in
BLDC motors, detect rotor position by producing high signals
when the rotor aligns with a phase, as depicted in Figure 5.
Based on the rotor’s position, specific phases are energized to
generate the necessary torque.

TABLE II: Motor Alignments at Different Angles

30° Alignment 90° Alignment

150° Alignment 210° Alignment

270° Alignment 330° Alignment

The motor’s commutation is divided into six sectors, each
covering a specific rotor angle range and determining the
switching sequence for the motor phases, as summarized in
Table III. In this scheme, a phase can be energized as a
north or south pole, or set to a high-impedance state. This
switching approach provides efficient torque generation, with
proper phase transitions occurring at each rotor position for
smooth operation.



Fig. 3: Open-Loop Motor Control

Fig. 4: Closed-Loop Motor Control

TABLE III: Commutation logic based on the Hall sequence to
generate switching sequences [3]

Position (θ) Sector Switching Sequence (AA’BB’CC’)
AA’ BB’ CC’

(-30°, 30°] 1 00 10 01
(30°, 90°] 2 01 10 00

(90°, 150°] 3 01 00 10
(150°, 210°] 4 00 01 10
(210°, 270°] 5 10 01 00
(270°, 330°] 6 10 00 01

For practical application, the X-NUCLEO-IHM07M1 shield
was selected for its compatibility and availability of support-

ing instructional materials. This hardware platform facilitated
testing and validating control code implementation.

Each motor phase has three possible states: high-impedance,
-Vcc, and +Vcc, as illustrated in Figures 6a, 6b, and 6c. These
states are controlled by two signals, EN (Enable) and IN
(Input). Table IV summarizes the EN and IN values across
sectors, detailing which switches are activated to drive the
motor consistently.

Hall sensors enhance BLDC motor control but are not
strictly required. Following the command sequence in Table IV
enables counterclockwise rotation, and reversing the sequence
achieves clockwise motion.



Fig. 5: Stator magnetic field phases along with their default
Hall sequence Figure reproduced from MathWorks [3]

(a) High impedance state (b) -Vcc state

(c) +Vcc state for

Fig. 6: Illustration of different phase states for motor control

D. FOC

The FOC algorithm is a closed-loop approach for con-
trolling BLDC motors, addressing torque optimization issues
present in open-loop methods. In the Six-Step method, torque
fluctuates due to varying angles between the rotor’s magnetic
field and the induced magnetic field, as shown in Figure 7a.
This fluctuation results in inefficient torque generation, where
maximum torque is only achieved at a 90° angle, as seen
in Figure 7b. FOC continuously adjusts the phase currents
to maintain this optimal angle, ensuring maximum torque
efficiency throughout the rotor’s rotation.

Achieving optimal control requires continuous rotor posi-

TABLE IV: Activation values for each sector

Sector EN1 IN1 EN2 IN2 EN3 IN3
1 0 0 1 1 1 0
2 1 0 1 1 0 0
3 1 0 0 0 1 1
4 0 1 0 0 1 1
5 1 1 1 0 0 0
6 1 1 0 0 1 0

tion feedback to adjust the three-phase current and maintain
the desired 90° alignment. Precise current control relies on
real-time measurements from current sensors in each phase.
These sensors enable feedback necessary for FOC’s current
regulation, ensuring efficient torque generation.

In BLDC motors, the rotor produces a constant magnetic
field based on its pole pairs, while the stator induces a
magnetic field from the powered phases. This interaction
generates an induced current, as illustrated in Figure 7c. The
current is split into two components: id, aligning with the
rotor’s magnetic field, and iq , perpendicular to it. Only iq
contributes to torque generation, so FOC aims to minimize
id to optimize efficiency and torque output.

The Clark Transform [4], shown in Figure 8a, plays a
crucial role by converting the three-phase current (abc) into
the stationary αβ frame. This transformation simplifies the
analysis and control of the current, facilitating efficient motor
operation.

In the αβ system, the direct axis (id) and quadrature
axis (iq) currents can be determined. The Clark Transform’s
matrix form includes a constant factor, k, which ensures either
current magnitude or power invariance between the abc and
αβ frames. For balanced systems, the sum of phase currents
equals zero, ensuring stability.

After the Clark Transform, the Park Transform [5] further
converts αβ currents to the rotating dq frame, aligning them
with the rotor’s magnetic field (Figures 8b and 8c). The Park
equations express id and iq as functions of the rotor angle
θ, separating the torque-producing iq component from the
non-torque-producing id component. This separation enables
precise torque control by modulating iq while minimizing id,
enhancing motor efficiency.

After the transformations, the FOC algorithm computes the
required phase current values. However, since BLDC motors
operate with voltage adjustments rather than direct current
inputs, these computed current values must be converted into
corresponding voltage signals. To achieve this, Pulse Width
Modulation (PWM) is used to approximate sinusoidal voltages
by rapidly switching the DC supply. Specifically, Space Vector
Modulation (SVM) is employed, as illustrated in Figure 9.
SVM calculates the precise duty cycle for each phase based
on the reference signal from the control block, enabling
PWM to adjust the effective voltage. This process creates
a smooth, sinusoidal-like current waveform in each phase,
ensuring efficient and continuous motor operation.

Implementing the Park Transform presents a challenge due
to the requirement for continuous rotor angle tracking. In an



(a) Magnetic Fields at the BLDC

(b) Maximum torque situation

(c) Induced magnetic field related to rotor
position

Fig. 7: Various aspects of BLDC motor performance

earlier stage of this study, a mechanical encoder was used;
however, due to noise issues affecting the accuracy of its
readings, the focus shifted to Hall sensors. Various methods
for angle estimation exist, but Hall sensors were chosen to
minimize potential failure points, a critical consideration in
aerospace applications.

The FOC control system (Figure 4) integrates the Clark
and Park transforms, along with a Proportional-Integral (PI)
controller for precise current and speed regulation.

The detailed description of how both Six-Step and FOC
control algorithms were implemented in this project can be
found in V-B.

(a) Direction of magnetic axes
in abc reference frame

(b) The d-axis aligns with the
α-axis

(c) The q-axis aligns with the
α-axis

Fig. 8: Illustration of magnetic axes and reference frame
alignment

Fig. 9: Gate pulse generation as a result of comparing the
modulation wave and the carrier wave
Figure reproduced from MathWorks [6]

IV. RUNNING THE CLOSED LOOP SIX-STEP CONTROL
SOFTWARE IN RISC-V CORE

During the project, some key decisions were made regarding
the control algorithm. As detailed in Section V-B, the imple-
mentation of FOC faced significant challenges, demanding a
shift to the Six-Step algorithm with closed-loop speed control.



This change was driven by the need for a simpler, yet effective,
solution to validate the project’s goals.

This project aims to validate the hardware requirements
necessary to guide the development of a custom RISC-V core.
To achieve this, we leveraged the NEORV32, an open-source
and highly customizable RISC-V implementation in VHDL,
to simulate the core’s performance and compatibility with
essential control algorithms. The NEORV32 was implemented
on a DE0-CV development board equipped with a Cyclone
V Altera FPGA [7], chosen for its compatibility with the
project memory requirements and availability at Insper. By
integrating specific hardware extensions and developing a cus-
tom peripheral, HallSector, for hall sensor signal processing,
we created a setup that approximates the environment of the
envisioned custom core, shown in figure 10. The following
subsections detail the hardware configurations and key insights
obtained from this implementation, providing a foundation for
the proprietary RISC-V core’s future design.

A. FPGA

An FPGA is a device that can be programmed to emulate
any custom digital circuit that fits its hardware limitations.
It can be used for prototyping and developing application-
specific integrated circuits (ASICs), deploying hyperspecial-
ized hardware-software systems for high-performance com-
puting, and creating hardware that does not require mass
production, as in industries like financial market trading.

In this project, we used the DE0-CV board from Terasic
Technologies [7], which features a Cyclone V FPGA chip
from Altera. This development kit was selected due to its
high availability at Insper, low cost, and sufficient capacity to
accommodate 64 KB of instruction memory (IMEM) directly
on-chip. Furthermore, a GitHub repository [8] was identified,
which contained a wrapped version of NEORV32 with a top-
level module compatible with the DE0-CV board, significantly
accelerating the integration process.

After synthesis and placement, resource utilization on the
Cyclone V FPGA was analyzed, revealing the following key
metrics:

• Logic Utilization: 2,287 Adaptive Logic Modules
(ALMs) out of 18,480 available (12%). A dense pack-
ing estimation suggests that 217 ALMs (1%) could be
recoverable with further optimization.

• Registers Used: 2,919 dedicated logic registers, repre-
senting 7% of the device’s 36,960 registers.

• Memory Utilization: The design utilized 106 M10K
memory blocks (34%) and consumed 822,272 block
memory bits (26% of total).

• I/O Pins: 55 out of 224 available I/O pins were used
(25%), including 3 clock pins.

• DSP Blocks: Only 1 out of 66 DSP blocks was used
(2%), reflecting limited reliance on high-performance
arithmetic hardware.

• LAB Utilization: 319 logic array blocks (LABs) were
partially or completely used (17% of total LABs).

Fig. 10: Project Diagram

• Combinational Logic: The design required 3,651 adap-
tive look-up tables (ALUTs), with a breakdown ranging
from 7-input to simpler ≤3-input functions.

• Packing Difficulty: Reported as low by the Fitter.
• Interconnect Usage: Average interconnect usage was

6.1%, with a peak usage of 22.7%.

B. RISC-V

The decision to focus on RISC-V was mainly motivated
by its being the industry’s most widely used open-standard
ISA. RISC-V is distinguished by its modularity and simplicity,
allowing the processor to specialize in different use cases.
However, the technology gained fame because of the open and



free license that allows any engineer or designer to implement
the ISA freely. It can be used for any purpose, and the
implementations may or may not be open at the developer’s
discretion.

Initially, the RV32I instruction set was selected as the base.
This is a 32-bit instruction set that supports basic operations
such as integer addition and subtraction, which serve as the
foundation for compilation and assembly by RISC-V tool-
chains. Regarding extensions, the M, F and Zicntr or similar
extensions were mapped as essential. These extensions respec-
tively implement multiplication and division, floating-point
operations, and basic system counters. These are necessary
for executing the control algorithm, as they enable the hard-
ware to perform the required mathematical operations with
decimal precision and at the required frequency and timing
requirements, which is critical for the proper functioning of
the system.

While not essential for the project’s core functionality,
the inclusion of the C extension is desirable. This extension
enables compressed instructions, allowing the compiler to op-
timize code by compressing frequently used 32-bit instructions
into 16-bit instructions, thus reducing overall memory usage.
This optimization is particularly valuable given the limited
memory available on FPGAs, which are not only constrained
in storage but also share programmable logic resources with
memory. These resources could otherwise be allocated for
additional functions, and any increase in memory capacity
or functionality would add to fabrication costs. By reducing
memory demands, the C extension helps avoid reliance on
external memory, which would require further configuration
and a communication bus to interface with the processor core,
increasing both the project’s complexity and its dependency
on external peripherals.

C. NEORV32

The NEORV32 [1] processor is a flexible, microcontroller-
like SoC built around the RISC-V CPU, designed entirely in
VHDL. It is highly customizable, enabling users to activate
specific features with minimal code change, mapping and
activating the desired features by using its port and flags in
the top-level entity of the processor.

It is licensed under the BSD 3-Clause License, which allows
redistribution and use in both source and binary forms, with or
without modification, provided that the same license is retained
for redistribution and that the authors’ names are not used for
promotional purposes without prior written permission [9].

In this project, the NEORV32 processor was customized
with specific peripherals to fulfill both general operational
requirements and the unique demands of our application. The
final setup includes general purpose input output pins (GPIO),
pulse width modulation pins (PWM), universal asynchronous
receiver/transmitter pins (UART), and communication bus
peripherals, as detailed in subsubsection IV-C1 and shown in
Figure 11. Moreover, a custom peripheral called HallSector
was implemented to address the specific challenge of accu-

Fig. 11: Peripherals Diagram

rately reading hall signals. HallSector will be discussed in
detail in subsection IV-E.

The configuration also incorporates additional extensions
compared to the original plan described in subsection IV-B.
The changes were needed since NEORV32 requires the use of
some extensions by default that cannot be deactivated, result-
ing in a core with RV32IMCX Zicsr Zicntr Zifencei Zfinx
base architecture and extensions, which are described in Sub-
section IV-C2.

1) Utilized Peripherals: To develop the project and execute
its functionalities, several peripherals were utilized, which can
be categorized as follows:

• Communication
• Motor control
• Internal processor needs
To establish communication between a host machine, we

used the UART communication protocol, which we configured
within the NEORV32 structure using its pre-implemented
Bluetooth module. This setup allowed for seamless data ex-
change, enabling remote control and monitoring capabilities
through telecommands. The UART-USB adapter facilitated
initial boot code loading, while the additional UART port pro-
vided dedicated support for Bluetooth-based communication,
ensuring reliable and efficient wireless connectivity essential
for system flexibility and ease of use in various operational
scenarios.

For motor control, two main peripherals were necessary:
the GPIO and PWM modules. The GPIO module provided
a straightforward way to interface with the motor’s sensors,
allowing for real-time monitoring of its velocity. Meanwhile,
the PWM module enabled fine control over the motor’s speed
by adjusting the duty cycle of the signal, effectively managing
power output to the motor.

To enable the processor to manage communication between
the core, peripherals, and extensions, a bus controller was



added. Specifically, XBUS was used, which is the NEORV32
implementation of the Wishbone bus [10] and is responsible
for handling all internal processor communication.

2) ISA Extensions: The RISC-V extensions are additional
units that add new features to the base core of RISC-V. These
units often require the implementations of another extensions
as dependency and also can be modified or be entirely new to
the ISA, as long as they met the RISC-V standards.

For this project, we are using the base 32 bits RISC-V
implementation RV32I along with the extensions M, C, Zicsr,
Zicntr, Zifencei and Zfinx. All these extensions are imple-
mented as described in the RISC-V ISA specifications [11] as
well as the X extension, original to the NEORV32, defining
an architecture of a RV32IMCX Zicsr Zicntr Zifencei Zfinx
core, which provides the mathematical operations and interrupt
capabilities required for the control code. However, each ex-
tension within the NEORV32 implementation presents certain
specifics that created challenges and required special handling
during development.

The Zfinx extension is responsible for floating-point oper-
ations, but its current implementation is incomplete and con-
tains errors in certain corner cases. For example, floating-point
division is not supported, requiring emulation of this operation
within the code. Additionally, the conversion between floating-
point and signed integers is not correctly implemented [12],
limiting the flexibility of the code. The Zicsr is mandatory
to the NEORV32 and implements instructions to access the
control and status registers (CSR), described in the RISC-V
ISA [11], and is a requirement for the Zicntr extension. The
Zicntr adds the basic cycle counter, machine cycle counter,
instructions-retired counter and machine instructions-retired
counter CSRs and is mandatory by the RISC-V spec. The
Zifencei extension is mandatory and allows manual synchro-
nization of the instruction stream. This instruction is not
actively utilized, and explaining it in depth in not in the
project’s scope. The X extension [13] is always active and
represents all the NEORV32 specific ISA extensions. These
include 16 fast interrupts and custom trap codes for the
machine trap cause, that maps the exact cause of a trap serving
as a debug tool.

D. Customizing the hardware

To configure the NEORV32 implementation on an FPGA,
it is essential to create a custom top-level entity. This entity
invokes the NEORV32 top-level component, passing in the
desired configuration settings for NEORV32 extensions, pe-
ripherals, and hardware-specific requirements, including clock
settings and resource availability.

Integrating NEORV32 with the FPGA clock involves syn-
chronizing the FPGA clock of 50 MHz with the NEORV32
system clock of 100 MHz using a phase-locked loop (PLL).
This ensures that the clock frequency aligns with the system’s
requirements.

E. Implementing HallSector IP for reliable HALL sensor
signal processing

An important challenge in the implementation of external
interrupts on the NEORV32 processor is that it uses a custom
external interrupt controller (XIRQ), which is incompatible
with the standard RISC-V ISA. Additionally, FreeRTOS 10.4.1
only supports RISC-V timer interrupts and external interrupts,
meaning that using NEORV32-specific interrupts as such the
external interrupts for the XIRQ module would cause the
FreeRTOS kernel to stall, requiring modifications on the
FreeRTOS kernel that are out of the project scope [14].

External interrupts were utilized via software to evaluate
changes in the hall sensor input. Our team developed a custom
hardware component, written entirely in VHDL, to solve this
issue, HallSector (hall value to motor sector processing). Hall-
Sector was designed to read the inputs from the hall sensor and
evaluate in what sector the motor is currently, also avoiding
readings in the transition step, using a debounce component.
This approach avoids the need for external interrupts, which
would conflict with the FreeRTOS kernel, and provides a
simple, efficient way to track the motor’s current sector.

The HallSector module works by reading the value of the
three hall sensor wires and applying debouncing techniques
to ensure that only valid states are counted. The count is
then stored in the base registers of NEORV32. Software
can access these counts through bus reads in the hardware
abstraction layer, making retrieving the data easily without
complex interrupt handling. This process is straightforward:
the software simply reads the relevant register from the base
register address space, which is managed by the bus system.

The VHDL code for the Hall Sector module, which im-
plements the debouncing logic and the hall sensor value
processing, is shown in Listing 1. This code highlights the
logic behind it and how it is integrated into the system to
ensure proper signal handling without relying on external
interrupts.

1 library IEEE;
2 use IEEE.STD_LOGIC_1164.ALL;
3

4 entity hall_sector is
5 Port (
6 clk : in std_logic;
7 rst : in std_logic;
8 signal_in : in std_logic_vector(2 downto 0);
9 sector : out std_logic_vector(2 downto 0)

10 );
11 end hall_sector;
12

13 architecture Behavioral of hall_sector is
14

15 signal prev_signal : std_logic_vector(2 downto
0) := "111";

16 signal stable_signal : std_logic_vector(2
downto 0) := "111";

17 signal debounce_counter : integer := 0;
18 constant debounce_limit : integer := 1000;
19

20 begin
21



22 process(clk, rst)
23 begin
24

25 if rst = ’1’ then
26 debounce_counter <= 0;
27 stable_signal <= "111";
28

29 else
30

31 if signal_in /= prev_signal then
32 debounce_counter <= 0;
33

34 else
35

36 if debounce_counter < debounce_limit then
37 debounce_counter <= debounce_counter + 1;
38

39 else
40 stable_signal <= signal_in;
41

42 end if;
43

44 end if;
45

46 prev_signal <= signal_in;
47 end if;
48 end process;
49

50 with stable_signal select
51 sector <= "100" when "001", -- 001 to 4
52 010" when "010", -- 010 to 2
53 "011" when "011", -- 011 to 3
54 "000" when "100", -- 100 to 0
55 "101" when "101", -- 101 to 5
56 "001" when "110", -- 110 to 1
57 -- others undefined
58 "111" when others; -- 111 to 7
59

60 end Behavioral;

Listing 1: VHDL code for the HallSector module

1) Exposing Sector Value via Memory Address in NE-
ORV32: To allow the software to access the value of the
sector, we mapped the HallSector module to a specific memory
address in the NEORV32’s address space. This memory-
mapped access allows software to read the sector value without
the need for complex interrupt handling, thus simplifying the
interface between the hardware and the FreeRTOS kernel.

In the NEORV32 top-level design, we use a simple bus
access process to expose the sector value through the memory-
mapped address at ‘0xFFFFE100U‘. The code responsible
for this is shown in Listing 2. This process listens for read
access requests on the bus and responds by returning the
current sector value stored in the HallSector module passed to
NEORV32 top-level via port map. If a read request is made
to the mapped address, the sector value is placed on the data
bus for the software to read.

The relevant VHDL code for the bus access logic is as
follows:

1 bus_hall_sector: process(rstn_sys, clk_i)
2 begin
3 if (rstn_sys = ’0’) then

4 iodev_rsp(IODEV_SECTOR) <=
rsp_terminate_c;

5

6 elsif rising_edge(clk_i) then
7 -- bus handshake --
8 iodev_rsp(IODEV_SECTOR).ack <=

iodev_req(IODEV_SECTOR).stb;
9 iodev_rsp(IODEV_SECTOR).err <= ’0’;

10 iodev_rsp(IODEV_SECTOR).data <= (others
=> ’0’);

11

12 if (iodev_req(IODEV_SECTOR).stb = ’1’)
then

13 if (iodev_req(IODEV_SECTOR).rw = ’0’)
then -- read access

14 iodev_rsp(IODEV_SECTOR).data <=
to_stdulogicvector("
00000000000000000000000000000"
& sector);

15 end if;
16 end if;
17

18 end if;
19 end process bus_hall_sector;

Listing 2: Bus access process to expose the sector value via
memory-mapped address

In this code, the bus access process listens for re-
quests at the memory-mapped address corresponding to the
IODEV SECTOR device. When the software sends a read
request (rw = ’0’), the current value of the sector is returned
on the data bus. The response includes the 32-bit sector
value from the HallSector module, which is appended to the
addressable data bus width, ensuring that the full 32-bit sector
value is accessible for reading.

This approach simplifies the interaction between the soft-
ware and the hardware, eliminating the need for complex
interrupt management and providing efficient access to the
sector data. The sector value can now be easily read via
standard bus operations, allowing the software to track the
motor’s velocity in real-time.

F. Graphical Interface

For this project, a graphical interface was developed with
the aim of enabling motor control and parameter adjustment
in a visual and user-friendly manner for the end user. The
interface is capable of sending and receiving communica-
tions via UART, including Bluetooth communication, allowing
short-distance telecommands to control the motor. Figure 12
illustrates the current application.

The interface was implemented in Python, leveraging the
PyQt5 library for creating the graphical user interface. Python
was chosen for its simplicity and the team’s expertise with
the language. For UART communication, including data trans-
mission and reception, the Python standard library for serial
communications was employed.

Delving into the details of the constructed graphical in-
terface, in Figure 12, region 1, it is possible to connect to
different ports of the host machine for communication. In
Figure 12, region 2, the desired motor speed can be defined



Fig. 12: Graphical interface

and sent via UART communication. This region also includes
a button to turn the motor on and off, as well as another
button to clear the terminal. Similarly, in Figure 12, region 3,
the overshoot (up) and settling time (ts) values for the PI
controller can be configured and transmitted. These values
are used by the interface to calculate the ki and the kp
parameters, which are then sent via UART. In Figure 12,
region 4, buttons are available to change the motor’s rotation
direction. Finally, in Figure 12, region 5, a graph displaying
the motor’s actual speed is presented, constructed from the
information sent by the control code to the graphical interface
via UART communication. Additionally, in Figure 12, region
6, a terminal is provided to display information received via
UART along with other debugging logs.

G. Continuous Integration and Deployment

To ensure consistency, stability, and efficiency in the de-
velopment and validation of the motor control system and the
NEORV32 core, a Continuous Integration (CI) and Continuous
Delivery (CD) pipeline was implemented. This pipeline en-
ables an automated approach for testing, integrating new fea-
tures, and deploying updates. Through CI, each code change
is verified in real-time, quickly identifying errors and ensuring
the code is always in optimal condition for integration. CD,
in turn, allows approved updates to be automatically deployed
to the production environment after verification, accelerating
development and reducing the risk of failures.

GitHub Actions was used to implement the CI/CD, a tool
that enables the creation of workflows triggered automatically
whenever specified files are modified. These workflows per-

form a series of tests to ensure that the code maintains its
functionality. Figure 13 illustrates the flow of actions that
occurs in the repository when CI/CD is applied; if the tests
are successful, the changes are ready to be integrated into the
project. Otherwise, the modifications receive a warning indi-
cating an issue, requiring a manual review before integration.

Fig. 13: Github Actions Workflow Diagram

For this project, two separate CI/CD pipelines were devel-
oped: one for hardware development and another for software
development. In the hardware pipeline, a workflow was created
to ensure that the code compiles in Quartus without errors,
ensuring that no changes compromise hardware functionality.
Additionally, the workflow generates a release of the .sof file,
making it easily accessible on the repository’s main page,
eliminating the need for local recompilation to obtain the
updated file.

For the software pipeline, a separate CI/CD was created.



This workflow ensures that all software files are correctly
compiled through their respective Makefiles, providing an
efficient and agile verification of the system’s functionality.

H. Printed Circuit Board (PCB) Design

To enhance system robustness and reliability, a custom PCB
was designed to replace all the jumper cables previously used.
The connections for this PCB are shown in Figure 14, and its
implementation is displayed in Figure 15.

I. Memory usage monitoring

In order to keep the memory usage of the project under the
limit of the resources available in the FPGA, we restricted the
code to using a minimum number of libraries, limiting it to the
FreeRTOS library, the standard C library, and the NEORV32
hardware abstraction library [1]

Additionally, to monitor the resources utilized by the li-
braries and to select functions in a way that reduces memory
usage, we used the tool elf-size-analyze, available in
the Git repository1. This tool allowed us to investigate the
RAM and ROM usages, the results were condensed in the
graphics displayed in figure 16 and 17.

Monitoring memory usage was crucial in our decision
to avoid the use of character-to-float conversion functions
during UART readings and as these required importing the
unistd.h library or other separate functions and the use
of char or string formats was mandatory during the sending
or reception of information since the NEORV32 library could
only send and receive characters in char or string formats.
These additions increased RAM and ROM usage by at least
20 kB to 30 kB.

V. RESULTS

This section presents the results of the hardware-software
co-design process, focusing on the integration of the NE-
ORV32 RISC-V core with Cyclone V FPGA hardware and the
proprietary HallSector module for precise motor control. The
results highlight the successful implementation and testing of
the Six-Step control algorithm in both open-loop and closed-
loop configurations, including the tuning of a PI controller
for speed regulation. Although the initial plan included a
full implementation of the FOC algorithm, time constraints
and the complexity of the approach required a shift to the
Six-Step algorithm. This decision ensured that key project
milestones were achieved while maintaining the focus on
validating hardware requirements. Critical challenges, opti-
mizations, and enhancements achieved during the development
process are also discussed, providing valuable information for
future custom RISC-V processor development.

A. Hardware-Software Interactions

As shown in Figure 18, the integration of the Cyclone V
FPGA, NEORV32 core, selected peripherals, and the custom
HallSector module has allowed us to emulate and test essential
hardware functionalities for the proprietary RISC-V core. The

1https://github.com/jedrzejboczar/elf-size-analyze

FPGA served as a versatile platform for configuring and
validating the NEORV32’s functionalities, while the core’s
modularity allowed for targeted customization aligned with
our control algorithm requirements. The peripherals—GPIO,
PWM, UART, and XBUS—supported communication, motor
control, and internal operations, enabling the six-step algo-
rithm to operate within our FPGA. Additionally, the HallSec-
tor module specifically addressed the need for precise HALL
sensor signal processing, providing reliable motor position
measurements without interrupt dependencies.

To facilitate motor control and parameter adjustment, a
graphical interface was developed. This interface enables
visual and user-friendly motor management, including UART
communication with Bluetooth support. The interface provides
features for connecting to different ports, setting motor speed,
configuring PI controller parameters, changing the motor’s
rotation direction, and visualizing motor speed in real-time.
A terminal within the interface also displays UART commu-
nication logs and debugging information.

The development process leveraged CI/CD pipelines im-
plemented through GitHub Actions. Two distinct workflows
were created: one for hardware and another for software
development. The hardware CI/CD workflow ensured Quar-
tus project compilation and generated updated .sof files for
FPGA programming. The software workflow verified correct
compilation of the system using Makefiles. These automated
processes enhanced development consistency and efficiency,
reducing the risk of errors during updates.

For increased system reliability, a custom PCB was designed
to replace jumper cables, establishing stable connections be-
tween the FPGA and the X-NUCLEO-IHM07M1. The PCB
streamlined hardware integration, ensuring robustness and ease
of use.

Memory usage monitoring was critical in keeping the
project within the Cyclone V FPGA’s resource limits. By
restricting the use of libraries to only FreeRTOS, the stan-
dard C library, and the NEORV32 hardware abstraction
library, memory consumption was optimized. Tools such
as elf-size-analyze were employed to monitor RAM
and ROM usage, helping identify unnecessary functions and
avoiding resource-intensive operations like character-to-float
conversions. These optimizations ensured efficient resource
utilization for the six-step motor control algorithm.

Through these efforts, the project successfully combined
hardware and software elements to implement a robust motor
control system, validated on an FPGA platform with cus-
tomized RISC-V functionalities.

B. Control Algorithms Implementation

With the theoretical groundwork established, the next step
was to implement the BLDC motor control algorithm. The
initial approach involved using a basic Six-Step algorithm
without position feedback, relying uniquely on timing intervals
for phase transitions. After completing this preliminary ver-
sion, the focus shifted to implementing Field-Oriented Control



Fig. 14: Connections between FPGA and X-NUCLEO-IHM07M1

Fig. 15: Final setup with PCB

(FOC) due to its superior control precision and efficiency for
BLDC motors.

An incomplete implementation of the FOC algorithm can
be accessed in the GitHub Repository2. The following sections
detail the challenges encountered during FOC implementation.
First, it is essential to understand the FOC architecture, as
shown in Figure 19 where the FOC control system features
two feedback loops:

• Current Loop: Controls iq and id currents, which are
critical for torque and flux control.

• Velocity Loop: While optional, it is essential for appli-
cations requiring precise speed regulation.

Each feedback loop operates on a distinct timescale. The
velocity loop typically updates at around 100 Hz, whereas the
current loop requires a significantly higher frequency—around
10 kHz—for effective current regulation. Additionally, the

2https://github.com/Arthur-Barreto/pico-foc

Fig. 16: RAM usage by closed loop six step control code

PWM frequency must be in the range of 20 kHz to 40 kHz
to approximate a sinusoidal voltage waveform effectively.

In initial tests, incorrect frequency settings resulted in con-
trol issues. For instance, the PWM frequency was inadvertently
set to 500 MHz, well above the necessary range, which led to
a 0V output from the motor driver.

Another critical aspect was the timing of current measure-
ments. Accurate readings necessitate an interrupt triggered
immediately after each PWM cycle to account for transis-
tor switching delays. This delay prevents short circuits that
could occur if both the high and low transistors in a phase
are activated simultaneously. Failing to manage this delay



Fig. 17: ROM usage by closed loop six step control code

Fig. 18: General view of final hardware-software solution

can create an unintended state not represented in Figure 6,
where both switches are closed, leading to erroneous current
measurements in the subsequent steps.

The use of the X-NUCLEO-IHM07M1 shield resolved these
electronic challenges by handling hardware-specific issues that
were outside the primary scope of this project.

One key limitation was the reliance on Hall sensors, which
only provide position feedback every 60 degrees. As men-
tioned in Chapter III-D, FOC requires continuous angular feed-
back to compute sine and cosine values for the Park transform.
To address this, an encoder with a 1.8-degree resolution was
added. Implementing a sensorless method using back EMF
sensing to estimate the rotor’s position could eliminate the
encoder, but it would add significant complexity to the project.

Execution time for each function within the FOC pipeline
presented another major challenge. Due to the high execution
times, the control update frequency could not reach the target
of 10 kHz, instead capping at around 1.8 kHz. The challenge
was primarily in functions involving trigonometric calcula-
tions, such as the Park transform, inverse Park transform, and
space vector modulation.

To address this, a hash table was implemented to store
precomputed sine and cosine values for known angles, as
the encoder provides position updates every 1.8 degrees. This
optimization reduced trigonometric calculations to constant-
time lookups (O(1) complexity), significantly improving per-
formance. Table V summarizes the execution times for each
function before and after applying this optimization. To mea-
sure these values, an oscilloscope was connected to an unused
GPIO pin, which was set to high before executing the function

and set to low after its completion. The elapsed time recorded
by the oscilloscope provided precise execution times for each
function.

As shown in Table V, the execution time for the SVM
function remains relatively high due to the reliance on arctan2
calculations, which are computationally intensive and depend
on dynamic inputs from previous stages, complicating the
implementation of a lookup table for this function.

While the FOC algorithm offers a sophisticated solution for
BLDC motor control, it is not yet functioning as expected,
even after addressing the timing and computational issues
previously identified. Given that the primary scope of this
project is to implement an application on RISC-V, rather
than fully developing the FOC algorithm, the decision was
made to proceed with the Six-Step algorithm using position
feedback. This approach provides a reliable control solution
for the BLDC motor, meeting the immediate application
requirements. Moving forward, the Six-Step algorithm will be
enhanced with closed-loop speed control to further improve
performance.

1) Open-Loop Six-Step Control: The open-loop Six-Step
control method for BLDC motors can be implemented in two
ways. The first option involves using a fixed delay between
each switch in the commutation sequence, allowing the motor
to advance through each sector at a steady rate. This method
is simple but does not account for variations in motor speed
due to load changes or external factors.

The second option leverages position feedback from an
encoder to determine when to switch sectors. This approach
provides more accurate commutation timing, as it adapts to
the motor’s actual position rather than relying on a fixed delay.
However, this method is still considered ”open-loop” despite
using position feedback because it does not actively control
the motor’s speed. Instead, it only uses feedback to ensure
correct sector switching based on position.

2) Closed-Loop Six-Step Control: Closed-loop Six-Step
control builds upon the position feedback utilized in open-loop
control but introduces an additional velocity feedback loop. In
this approach, the encoder provides position data to switch
sectors and calculate the motor’s speed. This velocity infor-
mation is then used to adjust the motor’s input dynamically,
enabling precise speed control.

Initially, the encoder was used for position feedback due
to limitations in the NEORV32, particularly regarding the
simultaneous use of external interrupts and an RTOS. How-
ever, during implementation, high noise levels were observed
in the encoder readings, which compromised the accuracy
of the position feedback. This noise was attributed to the
imperfect physical connection between the encoder and the
motor, resulting in vibrations that sometimes triggered false
encoder readings. To address this issue, the approach was
changed to utilize Hall sensors. This method provided the nec-
essary position feedback to implement the six-step algorithm.
External hardware was used to map the rotor’s sector based
on the Hall sensors’ output, as detailed in Section IV-E.



Fig. 19: FOC Architecture with Space Vector Modulation

TABLE V: Execution Time Comparison for Each Function in the FOC Algorithm (Before and After Optimization)

Function Execution Time (µs) SpeedupBefore Optimization After Optimization
Read Current 7.912 7.912 1.00

Clark Transform 6.368 6.368 1.00
Park Transform 65.208 7.020 9.29
Control Block 8.044 8.044 1.00

Inverse Park Transform 62.704 6.652 9.43
Space Vector Modulation 74.144 39.792 1.86

Motor Activation 5.632 5.632 1.00
Maximum Frequency (kHz) 4.35 12.28 2.83

After successfully obtaining accurate position feedback, the
next step involved determining the motor’s step response to
tune the PI controller for the system. UART communication
was established to receive speed feedback, as elaborated in
Section IV-B. Once this communication was operational, step
tests were performed by applying incremental duty cycles from
0% to 100%. The results are depicted in Figure 20.

Fig. 20: Step Response

As shown in Figure 20, the motor reached 63% of its
stabilized value, which averaged 16589 RPM, within 0.054 s.
This time constant enabled the evaluation of the PI controller,
which was designed with a 5% overshoot and a settling time

of 0.27 s (five times the motor’s time constant).
Table VI summarizes the calculation of Kp and Ki values.

The implementation of this design is illustrated in Figure 21,
which demonstrates the motor maintaining a constant speed of
1000RPM before transitioning to 5000RPM, confirming the
PI controller’s functionality. A video demonstration of this test
is available on YouTube3.

In Table VI, the variable a represents the open-loop pole
of the system under study, while K denotes the proportional
gain of the open-loop response. These parameters were critical
in designing the PI controller to achieve the desired dynamic
performance.

VI. CONCLUSION

VII. CONCLUSION

This paper delves into the exploration of RISC-V CPUs
for aerospace applications, focusing on the specific use case
of BLDC motor control. The open-standard nature of RISC-V
ISA offers a promising avenue for developing custom solutions
tailored to the stringent requirements of the aerospace industry.

The initial implementation of a basic open-loop Six-Step
algorithm demonstrated the feasibility of BLDC motor control
using RISC-V. However, the limitations of this approach,
particularly in terms of torque efficiency and precision, led
to the investigation of more advanced control techniques like
FOC.

3https://youtu.be/mKg5MloLQb8?si=juSUi8IVlXAgQppC



a (s−1) K (RPM/%duty cycle) UP (%) Ts (s) Ki (RPM/s) Kp (RPM/%)

18.519 16589 5 0.27 0.001500 0.000036

TABLE VI: Calculated Ki and Kp values for the PI controller.

Fig. 21: PI Controller Feedback

The implementation of FOC presented several challenges,
including timing constraints, current measurement accuracy,
and the need for precise rotor position feedback. Although
the use of encoders addressed some of these issues, further
optimizations are necessary to achieve the desired performance
and reliability. Considering that the main objective of the
project was to map hardware requirements and constraints, the
team decided not to continue working on the FOC algorithm.
The final software delivered was a closed-loop Six-Step al-
gorithm based on velocity calculations from the Hall sensor’s
position feedback.

Despite successfully implementing a control algorithm on
an open-source RISC-V distribution, this work highlights
the limitations of current open-source RISC-V distributions.
These distributions are often not mature enough, presenting
significant issues such as incompatibility with the FreeRTOS
kernel, suboptimal implementation of components, and devi-
ations from the original RISC-V design. These shortcomings
make them unsuitable for immediate adoption by the Brazilian
government, especially for critical applications like aerospace.

This research is part of a larger initiative aimed at reducing
Brazil’s dependence on foreign semiconductor technology
and promoting the development of a domestic semiconduc-
tor industry. By exploring the potential of RISC-V, we aim
to contribute to the country’s technological sovereignty and
enhance its capabilities in critical sectors like aerospace.

Overall, this research demonstrates the potential of RISC-V
CPUs for aerospace applications, particularly in the domain
of BLDC motor control. By addressing the challenges and
limitations identified in this work, we can pave the way for
the development of reliable and efficient RISC-V-based solu-
tions for critical aerospace systems, contributing to Brazil’s
technological advancement and self-reliance.
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